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Motivation 1-1

Motivation

� Financial asset returns often contain observations that are
inconsistent with the majority of the data

� Estimation or mis-specification errors in the portfolio loss
distribution can have a considerable impact on risk measures

� Choosing risk measures and its risk level plays an important
role in financial practice and risk management
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Motivation 1-2

Example

CRIX, the benchmark cryptocurrency index by Trimborn and
Härdle (2016)

Figure 1: Time series (left) and normal Q-Q plot (right) of the daily
log returns of CRIX during 20140731-20180101, standardized by using
GARCH(1, 1) model. Data source: crix.berlin
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Motivation 1-3

Common risk measures

� Value-at-Risk (VaR), the minimal loss of the α worst cases
� Expected-shortfall (ES), the expectation of the α worst loss
� Expectile, one-to-one mapping with VaR, reflects the tail

heaviness through the expectile-quantile transformation
I Expectile level wα such that ewα = qα, satisfies Details

wα =

∫ u
−∞ xdF (x)− uα

2{
∫ u
−∞ xdF (x)− uα}+ u − E [X ]

, u = qα (1)

I ES using expectile, Taylor (2008)

ESα = ewα
+

ewα
− E [X ]

1− 2wα

wα

α
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Example

Consider a mixture model given in Kuan et al. (2009)

Fε(x) = (1− ε)Φ(x
√
1− ε) + εΦ(x

√
ε)

� Contamination level ε
� Heaviness parameter σ = 1/

√
ε

� Interplay of risk level α and contamination level ε to determine
risk measures
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Research Questions

� How to establish suitable contamination models for such data?
� How sensitive are risk measures for such models?
� How are risk measures adjusted for contamination data?
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Contamination Models 2-1

Contamination Models

Consider

Fε(x) = (1− ε)F (x) + εH(x), x ∈ R, ε ∈ [0, 1]

� F stands for the pre-supposed ideal model
� H represents plausible deviations from F
� ε reflects the amount of uncertainty in F
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Common Assumptions

� Both F and H have infinite left endpoints since we are
interested with infinite risks

� Catastrophe contamination attracts financial regulators and
thus assume H has a heavier tail than F

� Risk measures concern extreme value risk management and
thus suppose F and H are common distributions in EVT
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Notation

� Recall that F and Fε stand for the pre-supposed ideal model
and the contamination model in the ε neighbourhood of F

� Denote by %α and %α(ε) the risk measure % of F and Fε
I Value-at-Risk (VaR): qα and qα(ε)
I Expected shortfall (ES): ESα and ESα(ε)
I Expectile-quantile transformation level: wα and wα(ε)
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Approximation of Risk Measures

� Case A: common contamination with ε ∈ (0, 1] fixed and
α→ 0

� Case B: interplay between ε and α with ε = εα → 0 as α→ 0
� Case C: infinitestimal contamination with α ∈ (0, 1) fixed and
ε→ 0
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Approximation results 3-2

Case A: Fixed ε

Theorem A Let Fε(x) = (1− ε)F (x) + εH(x) with ε ∈ (0, 1]. We
have as α→ 0

qα(ε) ∼ qα′(1) with α′
def
= α/ε

Further, if both exist with finite means, then

ESα(ε) ∼ ESα′(1),
wα(ε)

α
∼ wα′(ε)

α′

such that ewα(ε)(ε) = qα(ε)
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Approximation results 3-3

Case B: Dynamic ε

Theorem B Suppose ε = εα → 0 as α→ 0, we have
a) If F (x)/{εH(x)} → 0 as α→ 0 with x the α quantile of Fε, then

qα(ε) ∼ qα/ε(1), ESα(ε) ∼ ESα′(1),
wα(ε)

α
∼ wα′(ε)

α′

b) If εH(x)/F (x)→ 0 as α→ 0 with x the α quantile of Fε, then

qα(ε) ∼ qα, ESα(ε) ∼ ESα, wα(ε) ∼ wα
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Case C: Independent Small ε

Define the influence function (IF) of risk measure % of Fε as

IF (%;F ,H) = lim
ε→0

%(ε)− %
ε

=
∂%(ε)

∂ε

∣∣∣
ε=0

Hence, approximations of %(ε) with infinitestimal contamination
level ε is given by

qα(ε) ' qα + εIF (qα;F ,H), ESα(ε) ' ESα + εIF (ESα;F ,H)
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Case C: Influence Function

Theorem C Assume that F has positive continuous differential at
its α quantile, and H is continuous at qα. We have

IF (qα;F ,H) =
α− H(qα)

F ′(qα)

IF (ESα;F ,H) =
qα{α− H(qα)}+

∫ qα
−∞ x d{H(x)− F (x)}
α
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Example

Example 1 Normal contamination
Consider Fε(x) = (1− ε)Φ(x) + εΦ(x/σ) with σ > 1, the scale
parameter of the contamination model
� The larger the σ is, the heavier the contamination model is
� For ε ∈ (0, 1), we have %α(ε) ∼ %α/ε
� Let ε = ατ with τ > 0 a constant. The larger τ is, the lower

the contamination level is, and thus the risk measure might be
more robustness
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Example

Example 2 Laplace contamination
Consider Fε(x) = (1− ε)Φ(x) + εL(x/σ) with σ > 0 and L the
standard double-sided exponential distribution

L(x) =
1
2
exp
{
−
√
2|x |

}
, x ∈ R

� Essential heavier of Laplace model than normal model
� Approximations based on L might be faster than normal

contamination
� In order to obtain non-sensitivity of risk measures, a very

smaller ε = ατ (and thus a larger τ) is needed

SRMC–Sensitivity of Risk Measures



Numerical study 4-3

Example

Example 3 Power-like contamination
Consider Fε(x) = (1− ε)Φ(x) + εH(x/σ) with σ > 0 and H a
symmetry distribution with

H(x) =
1
2

{
1−

(
1− 4

4 + x2

)0.5
}
, x < 0

� Power decaying tail and infinite variance, not useful in practice
� Typical example with expectile coinciding with quantile
� All of the following results are obtained by R codes at

SRMC
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Laplace: ε = 0.5, σ = 1.6
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Figure 2: Approximations based on N(0, 1) to its true values, indicated
by dotted line and black line
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Laplace: α = 0.5%, σ = 1
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Figure 3: Approximations based on N(0, 1) to its true values, indicated
by dotted line and black line
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Laplace: τ = 1, σ = 1.6
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Figure 4: Approximations based on N(0, 1) to its true values, indicated
by dotted line and black line
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Laplace: τ = 0.1, σ = 0.95
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Figure 5: Approximations based on L(σ = 0.95) to its true values, indi-
cated by dotted line and black line
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RE Based on IF

Approximate of VaR and ES for Fε with small ε as

%̃(ε)
def
= %+ εIF (%;F ,H)

Define thus the relative error (RE) as

RE(%) =
%̃(ε)− %(ε)

%(ε)

Influence function
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RE Based on IF

Normal: σ = 2
ε 0.10 2.10 4.10 6.10 8.10

RE(qα) −0.02 −0.01 0.01 0.04 0.08
RE(ESα) 0.01 0.01 0.01 0.02 0.03

Laplace: σ = 1.2
ε 0.10 2.10 4.10 6.10 8.10

RE(qα) −0.02 −0.01 0.02 0.06 0.11
RE(ESα) 0.01 0.01 0.01 0.02 0.03

Power-like: σ = 1
ε 0.10 2.10 4.10 6.10 8.10

RE(qα) −0.02 −0.11 −0.33 −0.71 −1.22
RE(ESα) 0.01 0.03 0.08 0.15 0.26

Table 1: RE of VaR and ES with α = 0.25 is in h
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Tail Analyses via MEF

� Empirical Mean Excess (EME) of X ∼ F is given as

m̂X (t) =

∑n
i=1 (Xi − t) I{Xi > t}∑n

i=1 I{Xi > t}
, t large

� Power-like tails as F (x) ∼ Cx−1/γ are implied by

m̂X (t) ∼ γ

1− γ
t, γ ≥ 0

� Weibull-like tails as F (x) ∼ C exp {−xτ} are implied by

log m̂X (t) ∼ (1− τ) log t, τ > 0
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CRIX: Tail Heaviness Exploration

Figure 6: EME and log EME for daily log returns of CRIX during 20140731–
20180101. Lower tail of X is given by the upper tail of −X
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Model Choice of CRIX

� Data appears with Laplace tails
� The principal data can be modeled by normal distribution
� Consider the normal-Laplace contamination model with

parameter ε,µ = (µ1, µ2),σ = (σ1, σ2)

Fε(x) = (1− ε) ∗ Φ

(
x − µ1

σ1

)
+ ε ∗ L

(
x − µ2

σ2

)
, x ∈ R
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Estimation of CRIX

� EM algorithm to estimate parameters involved
� Three periods are considered
I A, 20140731–20180101
I B, 20140731–20160401
I C, 20160402–20180101

� Three methods to estimate VaR and ES
I Historical simulations: q̂∗α, ÊS

∗
α

I Laplace approximation: q̂α′(1), ÊSα′(1)

I Complete mixture model: q̂α(ε), ÊSα(ε)
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Estimation of CRIX

per. ε µ1 µ2 σ1 σ2

A 0.622 0.002 0.004 0.010 0.045
B 0.480 0.001 −0.002 0.014 0.045
C 0.731 0.002 0.008 0.006 0.045

Table 2: Estimated parameters of normal-Laplace contamination
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Estimation of CRIX

per. α(%) q̂∗α q̂α′(1) q̂α(ε) ÊS
∗
α ÊSα′(1) ÊSα(ε)

A
0.5 0.136 0.127 0.127 0.183 0.125 0.000
1 0.105 0.105 0.105 0.152 0.138 0.000
5 0.054 0.055 0.054 0.091 0.085 0.000

B
0.5 0.118 0.125 0.125 0.171 0.184 0.000
1 0.104 0.103 0.103 0.143 0.130 0.000
5 0.046 0.052 0.052 0.086 0.094 0.000

C
0.5 0.137 0.128 0.128 0.179 0.128 0.000
1 0.108 0.106 0.106 0.155 0.130 0.000
5 0.059 0.055 0.055 0.095 0.080 0.000

Table 3: Estimated VaR, ES based on normal-Laplace model
SRMC–Sensitivity of Risk Measures
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Conclusions

� Common data-sets such as CRIX follow certain contamination
models in Huber’s framework

� Practitioners must model carefully the tail feature in risk
management

� Theoretical approximations of risk measures are given with
illustrated examples
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Further work

� How to model the dynamic tail features of the data-sets?
� What about the min-max problem for these risk measures?
� How about the statistical estimations of these models?

SRMC–Sensitivity of Risk Measures



How Sensitive are Tail-Related Risk Measures
in a Contamination Neighbourhood?

Wolfgang Karl Härdle
Chengxiu Ling

Ladislaus von Bortkiewicz
Chair of Statistics
Humboldt–Universitä zu Berlin
School of Mathematics & Statistics
Southwest University
crix.berlin swu.edu.cn

http://crix.hu-berlin-de
http://swu.edu.cn/


References 8-1

References

Brazauskas, V.
Influence functions of empirical nonparametric estimators of
net reinsurance premiums
Insurance: Mathematics and Economics 32(1): 115–133, 2003.

Chen, S., Chen, C., Härdle, K. W., Lee, T. Ong, B.
Econometric analysis of a cryptocurrency index for portfolio
investment
Handbook of Blockchain, Digital Finance, and Inclusion,
Volume 1, Elsevier, pp. 175–206, 2017.

SRMC–Sensitivity of Risk Measures



References 8-2

References

Cont, R., Deguest, R. Scandolo, G.
Robustness and sensitivity analysis of risk measurement
procedures
Quantitative Finance 10(6): 593–606, 2010.

de Haan, L. Ferreira, A.
Extreme value theory, Springer Series in Operations Research
and Financial Engineering
Springer, New York, 2006.

SRMC–Sensitivity of Risk Measures



References 8-3

References

Dempster, A., Laird, N. Rubin, D.
Maximum likelihood from incomplete data via the em
algorithm
Journal of the Royal Statistical Society. Series B
(methodological) pp. 1–38, 1977.

Dierckx, G., Beirlant, J., De Waal, D. Guillou, A.
A new estimation method for Weibull-type tails based on the
mean excess function
Journal of Statistical Planning and Inference
139(6): 1905–1920, 2009.

SRMC–Sensitivity of Risk Measures



References 8-4

References

Engelke, S. Ivanovs, J.
Robust bounds in multivariate extremes
The Annals of Applied Probability 27(6): 3706–3734, 2017.

Fermanian, J. Scaillet, O.
Sensitivity analysis of VaR and expected shortfall for portfolios
under netting agreements
Journal of Banking & Finance 29(4): 927–958, 2005.

Ghosh, A.
Divergence based robust estimation of the tail index through
an exponential regression model
Statistical Methods & Applications 26(2): 181–213, 2017.

SRMC–Sensitivity of Risk Measures



References 8-5

References

Huber, P.J.
Robust estimation of a location parameter
The Annals of Mathematical Statistics 35(1): 73–101, 1964.

Kuan, C., Yeh, J. Hsu, Y.
Assessing Value-at-Risk with CARE, the conditional
autoregressive expectile models
Journal of Econometrics 150(2): 261–270, 2009.

McNeil, A., Frey, R. Embrechts, P.
Quantitative Risk Management: Concepts, Techniques and
Tools
Princeton university press, 2015.

SRMC–Sensitivity of Risk Measures



References 8-6

References

Mihoci, A., Härdle, K. W. Chen, C.
TERES-Tail event risk expectile based on shortfall
revised and resubmitted to Quantitative Finance, 1–13, 2017.

Taylor, J.
Estimating Value-at-Risk and expected shortfall using
expectiles
Journal of Financial Econometrics 6(2): 231–252, 2008.

Trimborn, S. Härdle, K. W.
CRIX an index for blockchain based currencies
SFB 649 Discussion Paper 2016-021 submitted to Journal of
Empirical Economics, 2016.

SRMC–Sensitivity of Risk Measures



References 8-7

References

Xu, X., Mihoci, A. Härdle, K. W.
lCARE–localizing conditional autoregressive expectiles
Journal of Empirical Economics to appear, 2018.

Zhu, S. Fukushima, M.
Worst-case conditional Value-at-Risk with application to robust
portfolio management
Operations Research 57(5): 1155–1168, 2009.

SRMC–Sensitivity of Risk Measures



Appendix 9-1

Expectile and Quantile

� Both are elicitable, since eα and qα correspond to %2
α and %1

α,
respectively

%γα = arg min
x

αE
[
(X − x)γ+

]
+ (1− α)E

[
(X − x)γ−

]
� First-order condition: setting x = eα, qα subsequently

αE [(X − x)+] = (1− α)E [(X − x)−] (2)
αP{X ≥ x} = (1− α)P{X ≤ x}
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Expectile and Quantile

Specifying x = ewα in (2), we have

wα =
E [(X − x)−]

E [(X − x)−] + E [(X − x)+]

=
E [(X − x)−]

2 E [(X − x)−] + E [X ]− x
, by using y+ = y + y−

with

E [(X − x)−] = xF (x)−
∫ x

−∞
ydF (y)

The desired expression wα in (1) is thus obtained since F (x) = α

due to ewα = qα Common risk measure
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