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Motivation 1-1

Motivation

[ Financial asset returns often contain observations that are
inconsistent with the majority of the data

[] Estimation or mis-specification errors in the portfolio loss
distribution can have a considerable impact on risk measures

[] Choosing risk measures and its risk level plays an important
role in financial practice and risk management
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Motivation

Example

CRIX, the benchmark cryptocurrency index by Trimborn and

Hardle (2016)

021 00

Figure 1: Time series (left) and normal Q-Q plot (right) of the daily
log returns of CRIX during 20140731-20180101, standardized by using
GARCH(1, 1) model. Data source:
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Motivation
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Common risk measures

[ Value-at-Risk (VaR), the minimal loss of the o worst cases
[ Expected-shortfall (ES), the expectation of the « worst loss

[] Expectile, one-to-one mapping with VaR, reflects the tail
heaviness through the expectile-quantile transformation

» Expectile level w, such that e, = q,, satisfies
fi’ xdF(x) — ua
U= qq (1)
2{["  xdF(x) — ua} +u—E[X]’

» ES using expectile, Taylor (2008)

Wa =

ew, — E[X]%

Esoz: w,
et T o o
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Motivation 1-4

Example

Consider a mixture model given in Kuan et al. (2009)
Fo(x) = (1 — €)P(xV1 — €) + ed(x1/e)
[] Contamination level €

[] Heaviness parameter o = 1/,/e¢

(] Interplay of risk level o and contamination level € to determine
risk measures
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Research Questions

[J How to establish suitable contamination models for such data?
[J How sensitive are risk measures for such models?

(] How are risk measures adjusted for contamination data?
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Contamination Models 2-1

Contamination Models

Consider

Fo(x)=(1—€)F(x)+eH(x), xe€R, ee€]0,]1]

(] F stands for the pre-supposed ideal model
[J H represents plausible deviations from F

[J € reflects the amount of uncertainty in F
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Contamination Models 2-2

Common Assumptions

[J Both F and H have infinite left endpoints since we are
interested with infinite risks

[] Catastrophe contamination attracts financial regulators and
thus assume H has a heavier tail than F

[] Risk measures concern extreme value risk management and
thus suppose F and H are common distributions in EVT
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Contamination Models 2-3

Notation

(] Recall that F and F. stand for the pre-supposed ideal model
and the contamination model in the e neighbourhood of F
[ Denote by o, and g, (€) the risk measure g of F and F,
» Value-at-Risk (VaR): g, and g, (€)
» Expected shortfall (ES): ES, and ES,(e)
» Expectile-quantile transformation level: w, and w,(¢)
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Approximation results 3-1

Approximation of Risk Measures

[] Case A: common contamination with e € (0, 1] fixed and
a—0

[] Case B: interplay between ¢ and o with e = ¢4, =+ 0 as a — 0

[] Case C: infinitestimal contamination with a € (0, 1) fixed and
e—0
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Approximation results 3-2

Case A: Fixed ¢

Theorem A Let F.(x) = (1 — €)F(x) + eH(x) with e € (0,1]. We
have as « — 0

dal€) ~ qur(1) with o aef afe

Further, if both exist with finite means, then

W (€) W (¢)

ESa(€) ~ ESw (1),

such that ey, (¢)(€) = gal(€)
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Approximation results 3-3

Case B: Dynamic ¢

Theorem B Suppose € = ¢, — 0 as a — 0, we have
a) If F(x)/{eH(x)} — 0 as @ — 0 with x the o quantile of F., then

Ga(€) ~ Gase(l),  ESa(€) ~ ESw (1), Waofe) _ war(e)

Oé/

b) If eH(x)/F(x) — 0 as & — 0 with x the a quantile of F., then

qa(e) ~ o, Esa(e) ~ ES,, Wa(€) ~ Wq
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Approximation results 3-4

Case C: Independent Small ¢

Define the influence function (IF) of risk measure p of F, as

_ ~oole)—o  dole)
IF(oi F, H) = !'ﬂ% € e le=0

Hence, approximations of o(€) with infinitestimal contamination
level € is given by

Ga(€) ~ qo + €lF(qa; F, H), ES.(€) ~ ES,, + €lF(ESy; F, H)
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Approximation results 3-5

Case C: Influence Function

Theorem C Assume that F has positive continuous differential at
its o quantile, and H is continuous at q,. We have

IF(ga; F, H) = a;("’cga)
F(Esas Fo ) — 9o = Hla)} [ xd{H(x) — F(9)

(0}
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Numerical study 4-1

Example

Example 1 Normal contamination

Consider Fc(x) = (1 — €)®(x) + eP(x/0) with o > 1, the scale
parameter of the contamination model

(] The larger the o is, the heavier the contamination model is
[J For e € (0,1), we have gn(€) ~ 04/c

(] Let e = o™ with 7 > 0 a constant. The larger 7 is, the lower
the contamination level is, and thus the risk measure might be
more robustness
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Numerical study 4-2
Example

Example 2 Laplace contamination
Consider Fc(x) = (1 — €)®(x) + eL(x/o) with ¢ > 0 and L the
standard double-sided exponential distribution

L(x) = %exp{—\[ﬂx\}, xeR

(] Essential heavier of Laplace model than normal model

(] Approximations based on L might be faster than normal
contamination

(1 In order to obtain non-sensitivity of risk measures, a very
smaller e = o™ (and thus a larger 7) is needed
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Numerical study 4-3
Example

Example 3 Power-like contamination

Consider Fc(x) = (1 — €)®(x) + eH(x/o) with 0 > 0 and H a
symmetry distribution with

H(x)—;{1—<1—4+4xz>0'5}, x <0

[] Power decaying tail and infinite variance, not useful in practice
[] Typical example with expectile coinciding with quantile
[ All of the following results are obtained by R codes at

Q SRMC
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Laplace: e =0.5,0 =1.6
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Figure 2: Approximations based on N(0,1) to its true values, indicated

by dotted line and black line
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Laplace: o = 0.5%,0 =1

Figure 3: Approximations based on N(0,1) to its true values, indicated

by dotted line and black line
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Numerical study

Laplace: 7=1,0=1.6

iR

15

002 2w

Laplace

46

Figure 4: Approximations based on N(0,1) to its true values, indicated
by dotted line and black line
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Numerical study 4-7
Laplace: 7 =0.1,0 =0.95
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Figure 5: Approximations based on L(oc = 0.95) to its true values, indi-

cated by dotted line and black line
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Numerical study 4-8

RE Based on IF

Approximate of VaR and ES for F. with small € as
~/ y def
o(€) = o+ elF(o; F, H)
Define thus the relative error (RE) as

_o(e) — o(e)
RE(0) = 0

«Influence function
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Numerical study

RE Based on IF

Normal: 0 =2

€ 0.10 2.10 4.10 6.10 8.10
RE(g) | —0.02 —0.01 0.01 0.04 0.08
RE(ES.) 0.01 0.01 0.01 0.02 0.03
Laplace: 0 =1.2

€ 0.10 2.10 4.10 6.10 8.10

RE(g.) | —0.02 —0.01 0.02 0.06 0.11

RE(ES.) 0.01 0.01 0.01 0.02 0.03
Power-like: o =1

€ 0.10 2.10 4.10 6.10 8.10

RE(g,) | —0.02 -0.11 -0.33 -0.71 -1.22

RE(ES,.) 0.01 0.03 0.08 0.15 0.26

Table 1: RE of VaR and ES with o = 0.25 is in %o
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Empirical study 5-1

Tail Analyses via MEF

[J Empirical Mean Excess (EME) of X ~ F is given as

2oy (X — 1) X > 1}
i H{Xi>tp

[ Power-like tails as F(x) ~ Cx~1/7 are implied by

mx(t) = t large

mx (t) ~ ﬁf, 720

[] Weibull-like tails as F(x) ~ Cexp {—x"} are implied by

log mx(t) ~(1—71)logt, 7>0
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CRIX: Tail Heaviness Exploration

Upper tail Lower tail
S T T T T T = T T T T T T
015 -0.05 005 010 015 -0.05 005 010 015
Threshuld Threshuld
2 7] =
= 1 =
< = T
10 0 6 - 2 RE: 10 0 6 - 2
log Threshald log negative Threshold

Figure 6: EME and log EME for daily log returns of CRIX during 20140731—

20180101. Lower tail of X is given by the upper tail of —X
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Model Choice of CRIX

(] Data appears with Laplace tails
[] The principal data can be modeled by normal distribution

(1 Consider the normal-Laplace contamination model with
parameter €, i = (1, pi2), o = (01,02)

Fe(x)Z(l—e)*d><XM1>+e*L<XM2>7 xeR

01 02
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Empirical study 5-4

Estimation of CRIX

(] EM algorithm to estimate parameters involved
[] Three periods are considered

» A, 20140731-20180101

» B, 20140731-20160401

» C, 20160402-20180101
(] Three methods to estimate VaR and ES

» Historical simulations: qa,ESZ

» Laplace approximation: G,/ (1), ESO/(l)

» Complete mixture model: g, (e€), E. /Ea(e)
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Empirical study

Estimation of CRIX

per. € j21 2 01 02
A 0.622 0.002 0.004 0.010 0.045
B 0.480 0.001 —0.002 0.014 0.045
C 0.731 0.002 0.008 0.006 0.045

5-5

Table 2: Estimated parameters of normal-Laplace contamination
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Empirical study 5-6
Estimation of CRIX

per. | (%) G Gw(1) Ga(e) ES, ESw(1) ESa(e)

0.5 0.136 0.127 0.127 0.183 0.125 0.000

A 1 0.105 0.105 0.105 0.152 0.138 0.000

5 0.054 0.055 0.054 0.091 0.085 0.000

0.5 0.118 0.125 0.125 0.171 0.184 0.000

B 1 0.104 0.103 0.103 0.143 0.130 0.000

5 0.046 0.052 0.052 0.086 0.094 0.000

0.5 0.137 0.128 0.128 0.179 0.128 0.000

C 1 0.108 0.106 0.106 0.155 0.130 0.000

5 0.059 0.055 0.055 0.095 0.080 0.000

Table 3: Estimated VaR, ES based on normal-Laplace model
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Conclusions

(] Common data-sets such as CRIX follow certain contamination
models in Huber’s framework

[ Practitioners must model carefully the tail feature in risk
management

(] Theoretical approximations of risk measures are given with
illustrated examples

SRMC—Sensitivity of Risk Measures ©rix




Conclusions 6-2

Further work

[] How to model the dynamic tail features of the data-sets?
[J What about the min-max problem for these risk measures?

[0 How about the statistical estimations of these models?
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Appendix 9-1

Expectile and Quantile

[] Both are elicitable, since e, and g, correspond to g2 and gL,
respectively

o) = arg mxin aE[(X=x)1]+(1—-a)E[(X—x)"]
(] First-order condition: setting x = e, g, subsequently

aE[(X —x)1] = (1 - a)E[(X —x)] (@)
aP{X > x} = (1 — a)P{X < x}
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Appendix 9-2

Expectile and Quantile

Specifying x = ey, in (2), we have

L E(X-x)]
" T EIX = %) 1+ EIX = x);]
E[(X —x) ]

:2E[(X_X)—]+E[X]—x’ by using yy =y + y_

with
(X~ x)-] = xF ()~ [ ydF(y)
The desired expression w,, in (1) is thus obtained since F(x) = «

due to ey, = qa
(o7
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